MimiQ: Low-Bit Data-Free Quantization of Vision Transformers with Encouraging Inter-Head Attention Similarity

Kanghyun Choi¹ Hyeyoon Lee¹ ¹Seoul National University ²Google

Dain Kwon¹ ³KAIST

SunJong Park¹

Kyuyeun Kim²

Noseong Park³

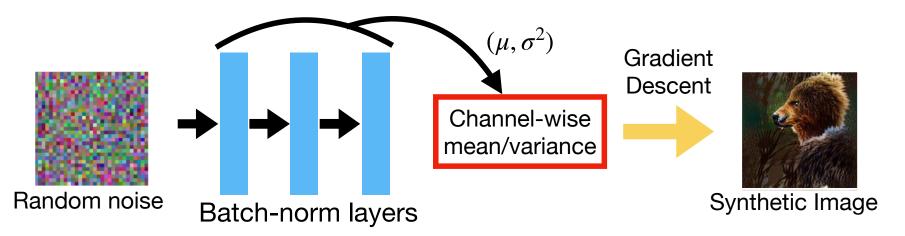
Jonghyun Choi¹

Jinho Lee¹

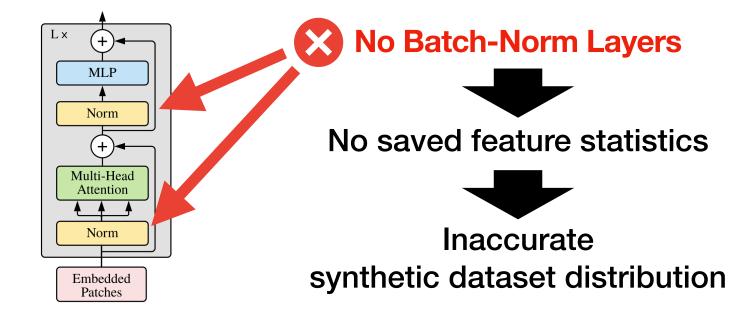
TL; DR: Enhancing head-wise attention similarity in Vision Transformers leads to better low-bit data-free quantization.

Backgrounds: Data-Free Quantization

- The original dataset is often inaccessible due to various reasons, such as privacy, copyright, or protection.
- Data-free quantization (DFQ) aims to quantize networks without the original dataset.
- Prior works for CNN utilize saved statistics in batch-normalization layers to create a synthetic dataset closer to the original.



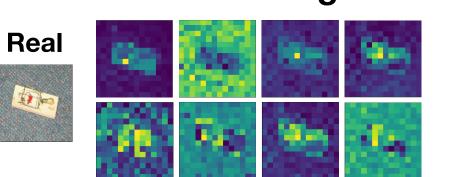
However, ViTs have no batch-norm layers

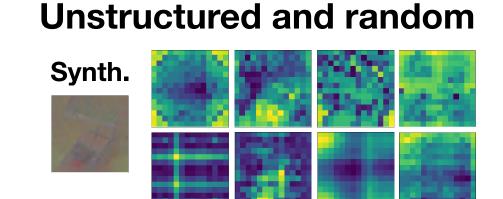


Motivation: Head-wise Attention Similarity

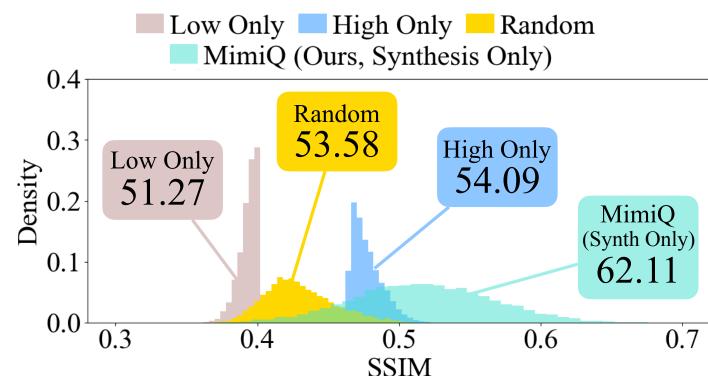
We examine the head-wise attention map of ViTs.

Structured and aligned



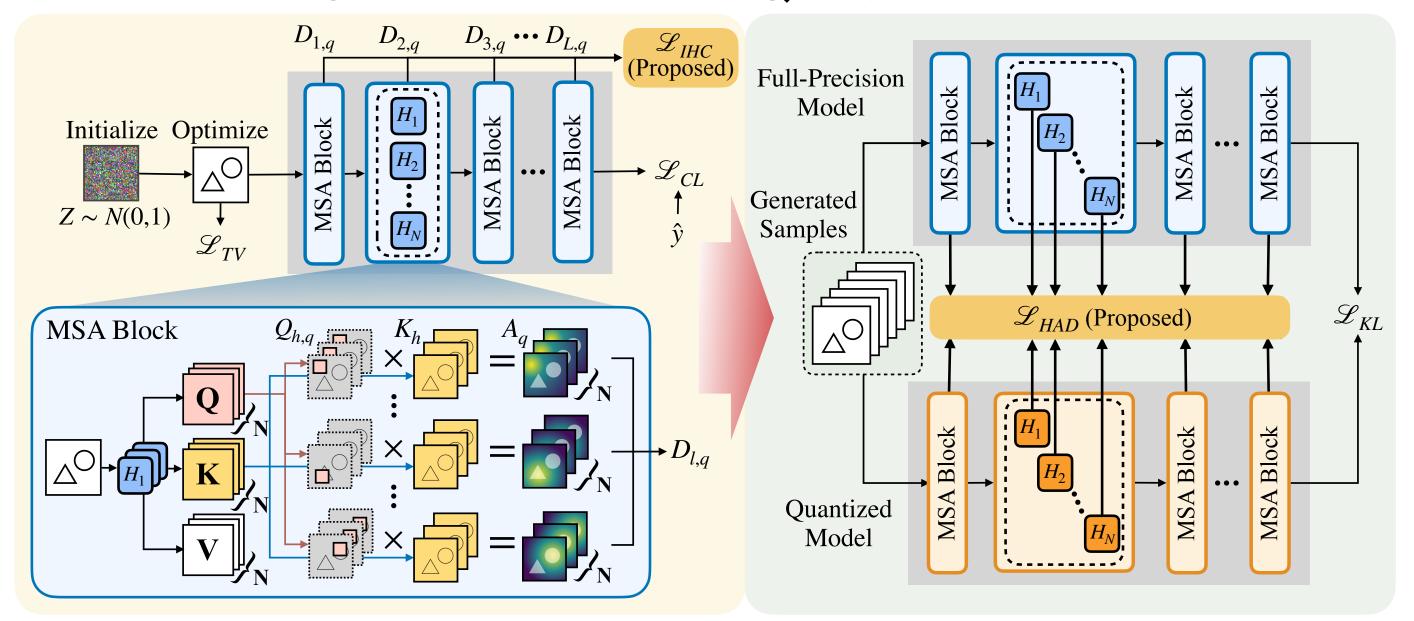


From the synthetic dataset, we sample low- and high-attention similarity data and test the quantization accuracy of ViTs.



Synthetic dataset with high attention similarity produces better quantization accuracy

Overview of MimiQ Framework



Proposed Method 1: Sample Synthesis towards Inter-Head Similarity

Goal: Generate synthetic samples with high attention similarity

1. Collect attention map A_q of q-th query patch:

$$A_q = \begin{bmatrix} Q_{1,q} K_1^{\mathsf{T}} & Q_{2,q} K_2^{\mathsf{T}} & \cdots & Q_{N,q} K_N^{\mathsf{T}} \end{bmatrix}$$

2. Measure the distance D_a across N heads with distance metric f_{dist} . We choose structural similarity index measure (SSIM) for f_{dist} :

$$D_{q} = \frac{1}{N^{2}} \sum_{i}^{N} \sum_{j}^{N} f_{dist}(A_{q,i}, A_{q,j})$$

- 3. Compute Inter-head similarity loss: $\mathcal{L}_{IHC} = \frac{1}{IP} \sum_{l}^{L} \sum_{q}^{P} (1 D_{l,q})$
- 4. Optimize synthetic samples with $\mathcal{L}_G = \mathcal{L}_{IHC} + \alpha \mathcal{L}_{CL} + \beta \mathcal{L}_{TV}$

Calc. SSIM

Proposed Method 2: Head-wise Structural Attention Distillation

Goal: Align attention maps of quantized network with full-precision network

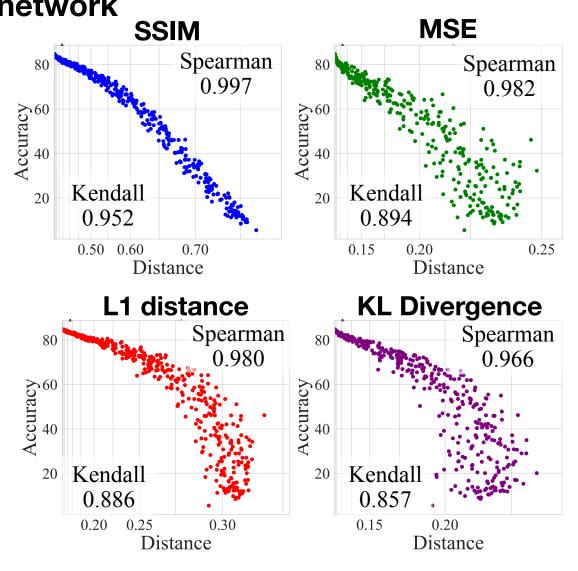
- 1. Collect head-wise output H of teacher \mathcal{T} and student \mathcal{S} .
- 2. Compute head-wise distance loss \mathcal{L}_{HAD} :

$$\mathcal{L}_{HAD} = \frac{1}{LN} \sum_{l}^{L} \sum_{i}^{N} g_{dist}(H_{l,i}^{\mathcal{T}}, H_{l,i}^{\mathcal{S}})$$

3. Train quantized network with $\mathcal{L}_T = \mathcal{L}_{\mathit{KL}}(f_{\mathcal{T}}(\hat{X})||f_{\mathcal{S}}(\hat{X})) + \gamma \mathcal{L}_{\mathit{HAD}}.$

To choose g_{dist} , we randomly quantized a portion of attention heads and measured the accuracy and distance correlation of SSIM, meansquared error, L1 distance, and KL divergence.

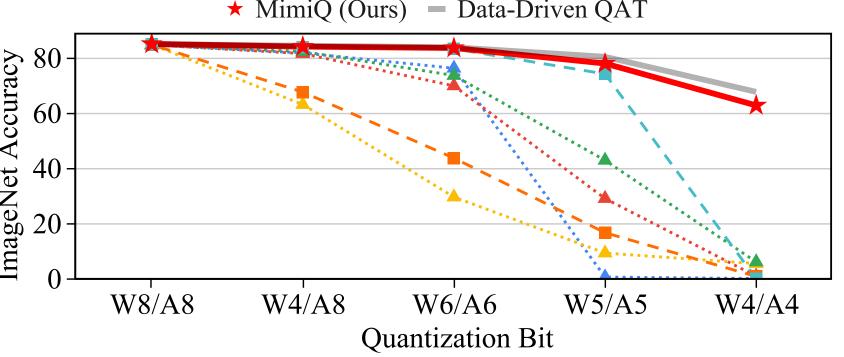
The results show that SSIM has the highest correlation.



Evaluation and Analyses

Comparison of different quantization bit settings

▲ ZeroQ (CVPR '20) ▲ GDFQ (ECCV '21) ▲ Qimera (NeurIPS '21) ▲ AdaDFQ (CVPR '23) ■ PSAQ V1 (ECCV '22) ■ PSAQ V2 (TNNLS '23) ★ MimiQ (Ours) — Data-Driven QAT



Comparison of quantization time and accuracy

Method	Type	Synth.	Quant.	Total	Acc.
GDFQ AdaDFQ PSAQ-V1 PSAQ-V2	QAT QAT PTQ QAT	- 0.11h -	10.70h 8.44h 0.0002h 4.55h	10.70h 8.44h 0.11h 4.55h	11.73 6.21 0.94 2.83
MimiQ-1k MimiQ-4k MimiQ-10k	QAT QAT QAT	1.98h 7.92h 19.79h	2.39h 2.39h 2.39h	4.37h 10.31h 22.18h	59.32 62.59 62.91

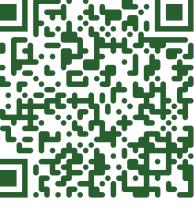
MimiQ preserves data privacy

Identity Attack and Model Inversion Attack

	Measure	Train	Test
	Synthetic/Real Distinguishability	99.97	99.9
	$\begin{array}{c} \text{Synthetic} {\rightarrow} \text{Real} \\ \text{Transferability} \end{array}$	49.69	0.16
Married St. Lateral St.			

Input Reconstruction Attack: We measure LPIPS between MimiQ samples and the original dataset. The figure shows that MimiQ samples do not resemble specific images of the original data.

Model Inversion Attack: We show that our samples are clearly distinguishable from the real data and cannot be used to model inversion (stealing) attack.



Author Page