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Calibration with the Original Datasets
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Optimization 

Training

 Require 
77.73%

8.38%

32b FP 4b INT

Quantized network accuracy 
w/o fine-tuning1

Necessary recalibration 
with the original dataset

1 ResNet50, ImageNet-1k, 4bit quantization



The original dataset has issues 

• Copyright 

• Privacy  

• No public use 

• Too large

Calibration with the Original Datasets

Calibration 
Optimization 

Training

 Require 



Data-Free Quantization

[1] ResNet50, ImageNet-1k, 4bit quantization

77.73%

8.38%

32b FP 4b INT

Quantized Network Accuracy 
w/o fine-tuning1
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Inaccessible Dataset Problem
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Backgrounds: Data-Free CNN Quantization 
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Data-Free ViT Quantization

Using Instance-Norm Layer

No saved feature stats

Cannot create 
BN-based synthetic samples

No Batch-Norm Layers



Current Limitations: No Batch-Norm
Significant accuracy drop in low-bit quantization

ViT-Base Swin-Base
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How to measure inter-head similarity?



Structure Similarity Index Measure

• SSIM: Image quality evaluation metric mimicking human perception


• Weighted product of luminance ( ), contrast ( ), structure ( ) l c s



Structural Similarity!
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Inter-head SSIM score of attention and quantization accuracy
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Generating Synthetic Images

• Generate synthetic images towards high 
absolute SSIM value


• SSIM > 0 : Positive correlation 
Foreground<->Foreground, vice versa


• SSIM < 0 : Negative correlation 
Foreground<->Background, vice versa


• Both positive and negative correlation is 
recommended for better visual quality



•  : Cross-entropy loss 


• Optimize synthetic image to be classified 
as a pseudo label 


•  : Total variance loss 


• Reduces abrupt changes between 
nearby pixels


• : Maximize inter-head SSIM score
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Generating Synthetic Images
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SSIM-aware Attention Map Distillation

• Head-wise attention map distillation


• Reduce distance between attention maps 
 

• How do we measure the distance 
between attention maps?



SSIM-aware Attention Map Distillation

SSIM MSE L1-distance KL-Divergence

Randomly quantize each head of attention maps and plot 
distance metric and quantization accuracy

Spearman: 0.997 
Kendall: 0.952

Spearman: 0.982

Kendall: 0.894

Spearman: 0.980

Kendall: 0.886

Spearman: 0.966

Kendall: 0.857



Experimental Result: Accuracy

ViT-Base Swin-Base

Preserve high accuracy in low-bit settings



Accuracy gain up to 51.18%p

Experimental Result: Accuracy



Analysis: Computational Costs

• MimiQ requires synthetic data 
generation and quantization-aware 
training


• With similar costs, MimiQ shows 
superior accuracy


• More synthetic data shows further 
accuracy boost



Analysis: GRAD-CAM

Real PSAQ-ViT STEAK-QLCL + LTV

In
pu

t I
m

ag
e

G
ra

d-
C

A
M

G
ra

d-
C

A
M

Real PSAQ-ViT STEAK-QLCL + LTV

Synthetic texture on the center 
GRAD-CAM shows aligned attention on the desired texture information
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Societal Concerns

Most similar pairs of 

synthetic and real images

Input Reconstruction Attack Model Inversion Attack

Adaptability of synthetic 
data training to attacks

Synthetic dataset 

does not restore exact images 


from the training set

Synthetic and real samples 
are distinguishable and has 

low transferability



Conclusion
• Data-free quantization aims to tackle the scenario that the original dataset is 

inaccessible due to privacy concerns, the large dataset size, and copyright 
issues.


• We propose MimiQ, the first work to consider inter-head attention similarity 
with SSIM for synthetic sample generation and quantization-aware training.


• We show attention similarity of ViT models plays a crucial role in model 
training, affecting final accuracy


