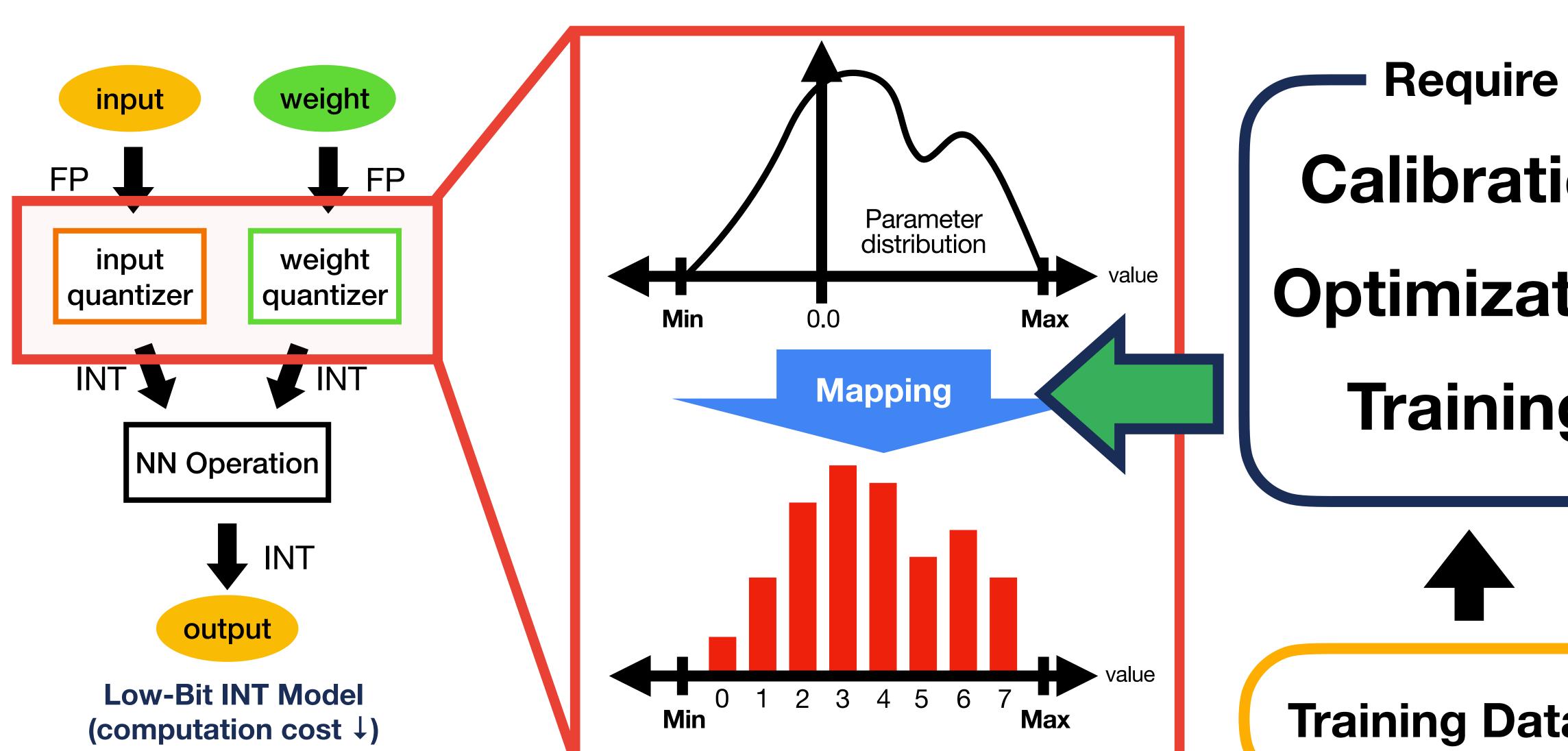
MimiQ: Low-Bit Data-Free Quantization of Vision Transformers with Encouraging Inter-Head **Attention Similarity**

Kanghyun Choi¹ Kyuyeun Kim²

Hyeyoon Lee¹ Dain Kwon¹ SunJong Park¹ Noseong Park³ Jonghyun Choi¹ Jinho Lee¹

¹Seoul National University ²Google ³KAIST

Quantization Mapping

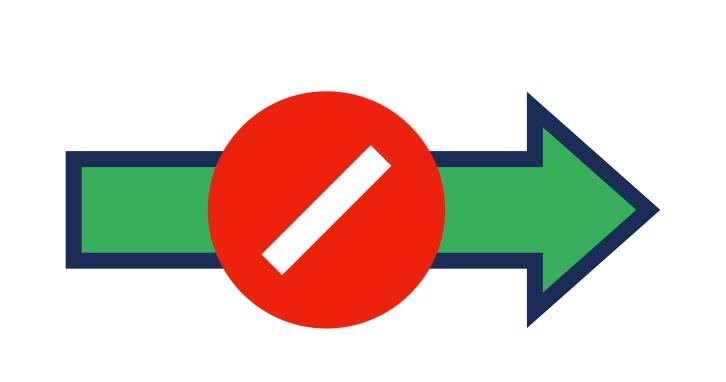


Calibration Optimization Training

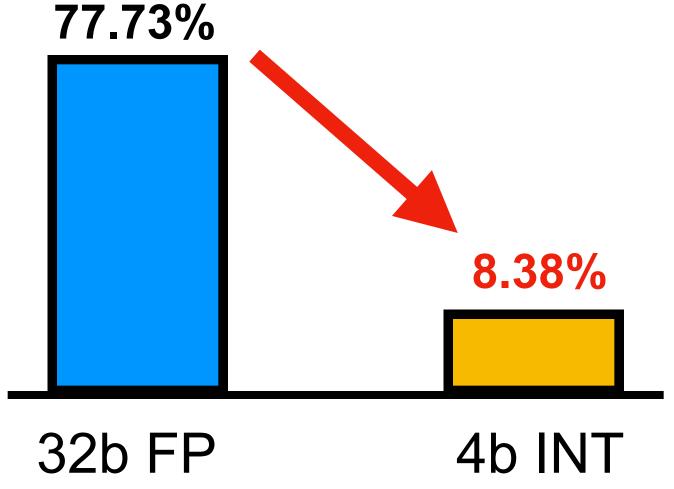
Training Dataset

Calibration with the Original Datasets

Calibration
Optimization
Training



Quantized network accuracy w/o fine-tuning¹



Necessary recalibration with the original dataset

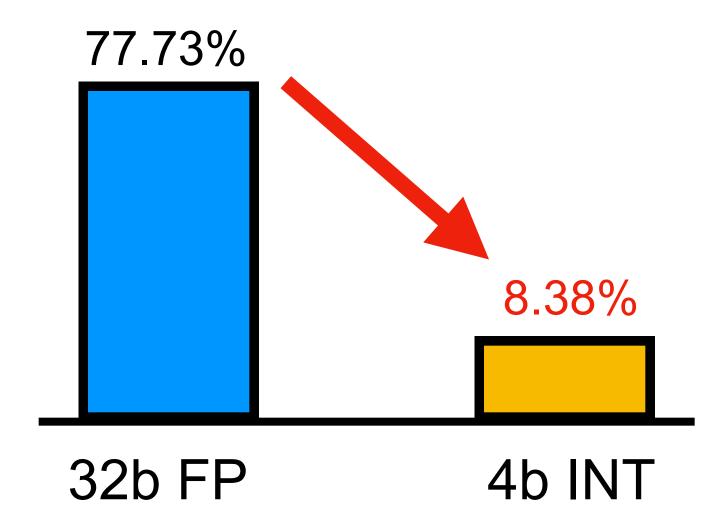
Calibration with the Original Datasets

The original dataset has issues

- Copyright
- Privacy
- No public use
- Too large

Data-Free Quantization

Quantized Network Accuracy w/o fine-tuning¹



Necessary Recalibration with Original Dataset

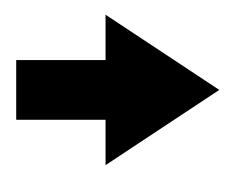
Fine-tuning without the original dataset

Inaccessible Dataset Problem

Protection

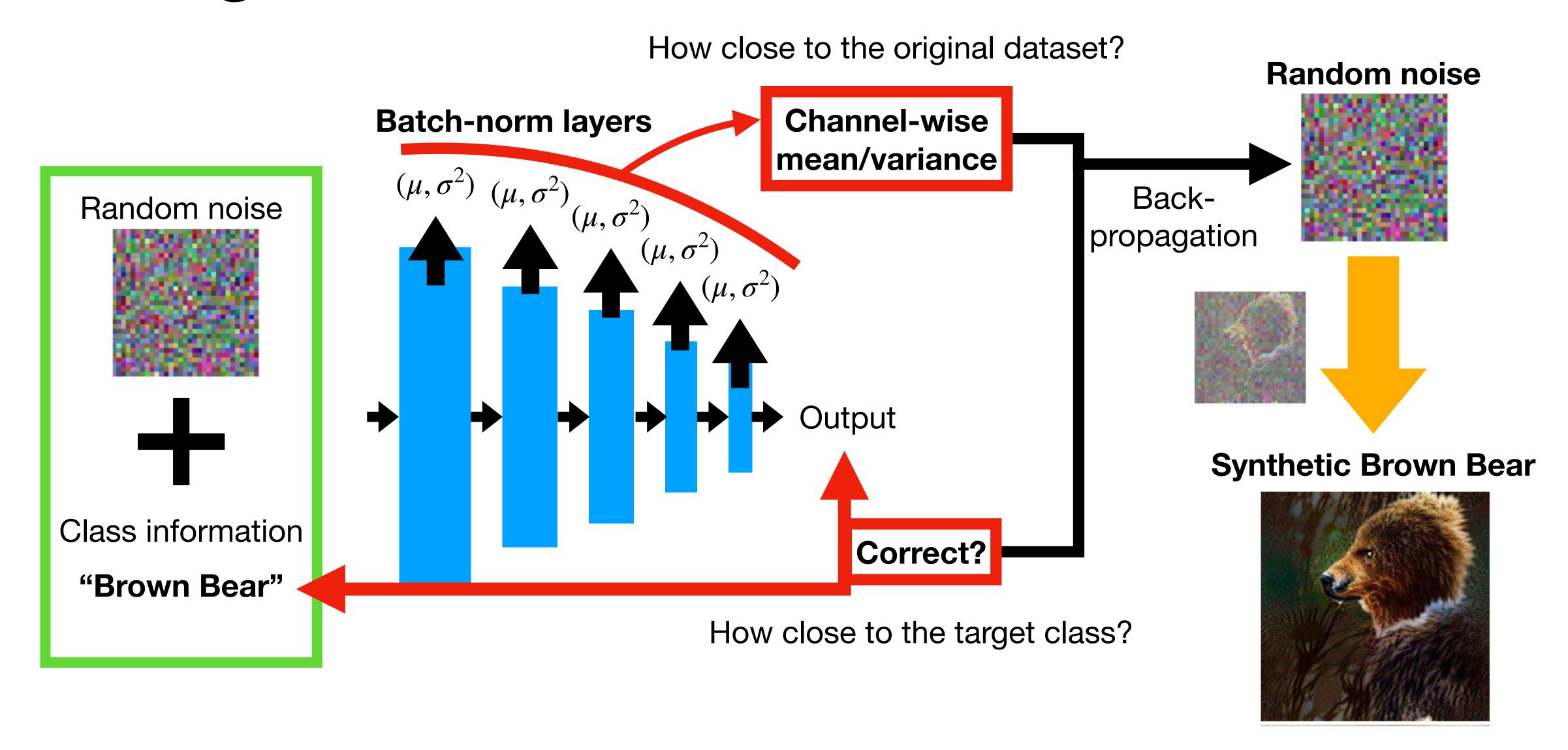


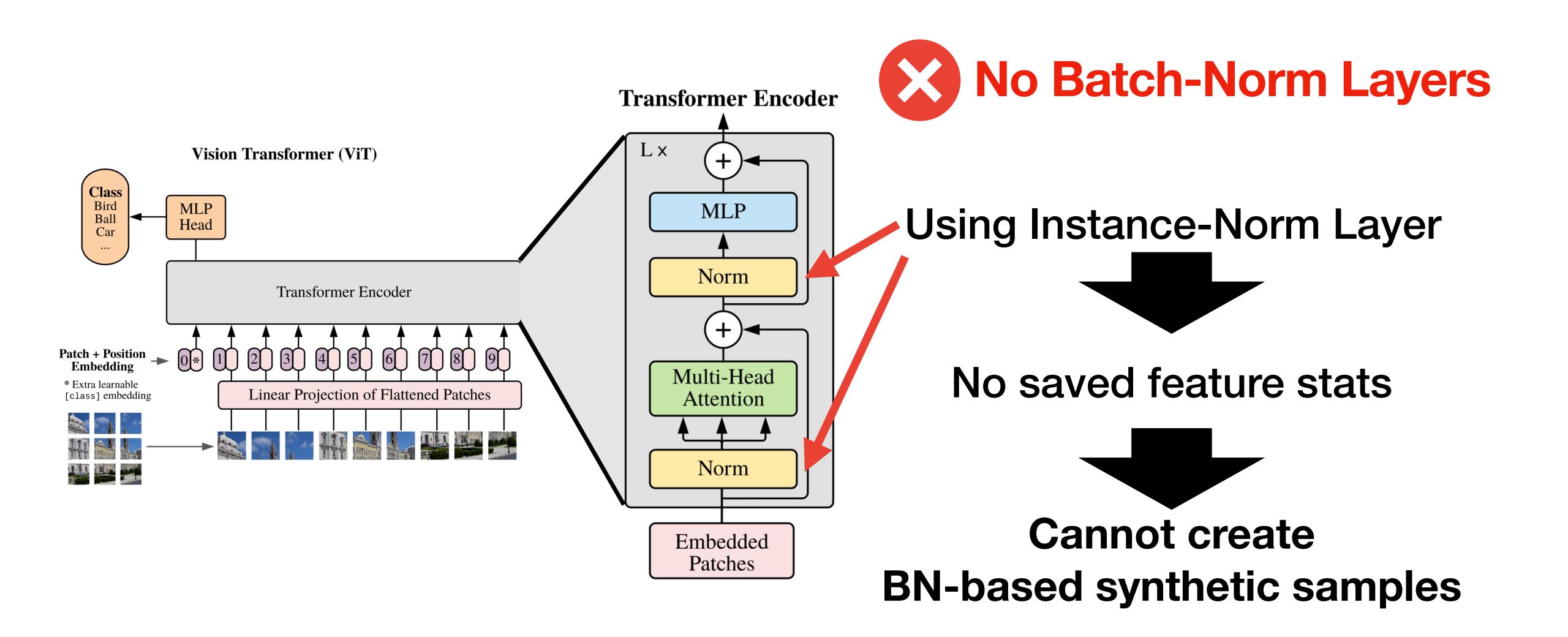
Copyrights



Data-Free Quantization

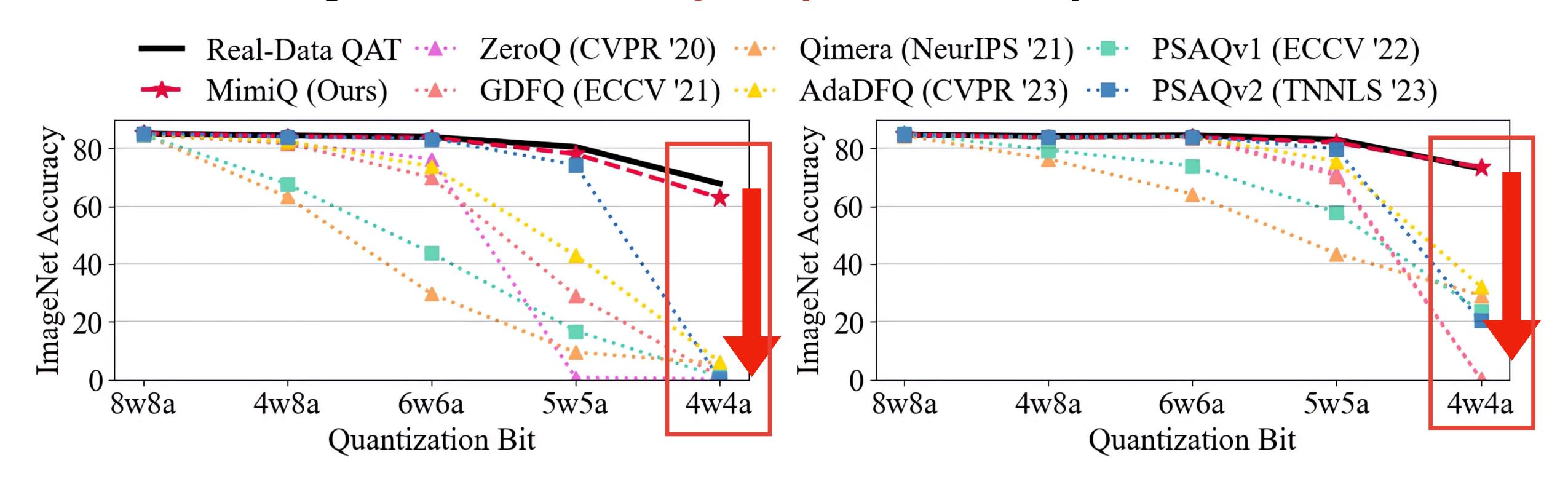
Backgrounds: Data-Free CNN Quantization





Current Limitations: No Batch-Norm

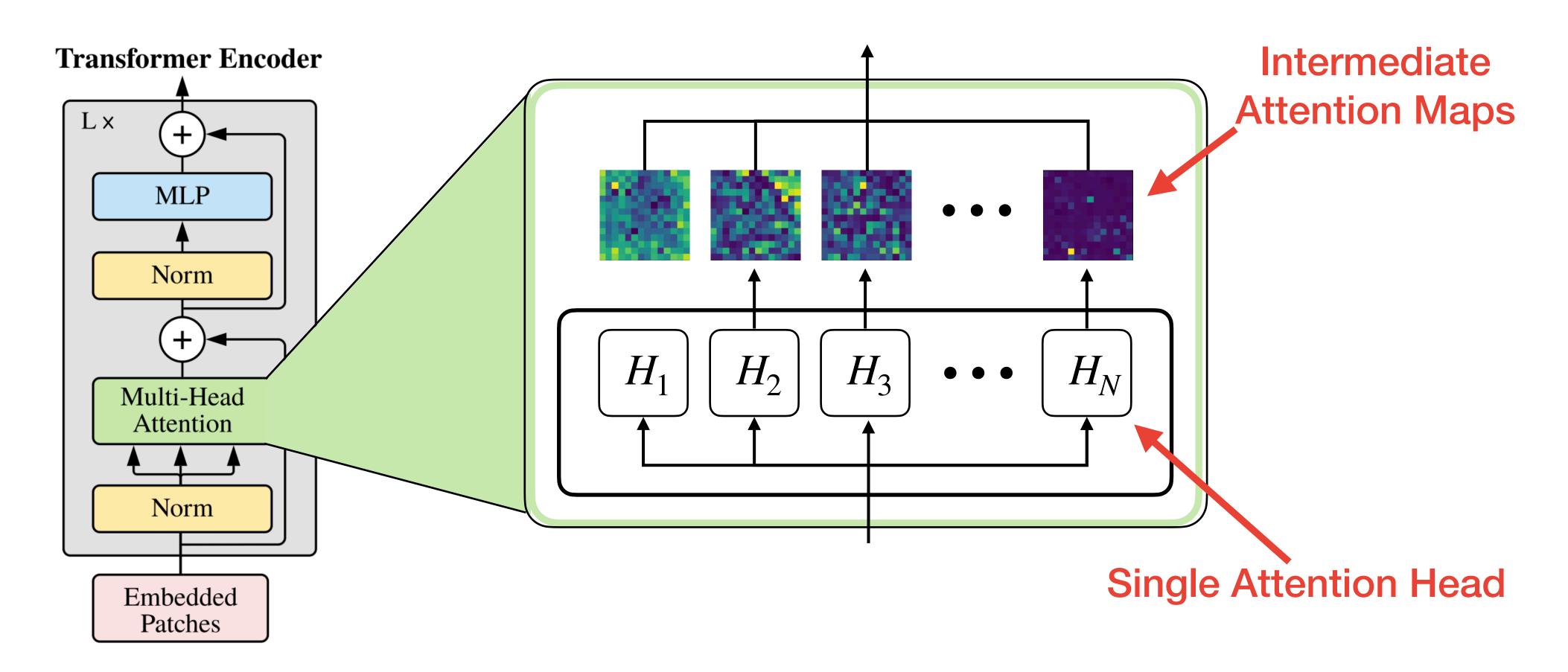
Significant accuracy drop in low-bit quantization



ViT-Base

Swin-Base

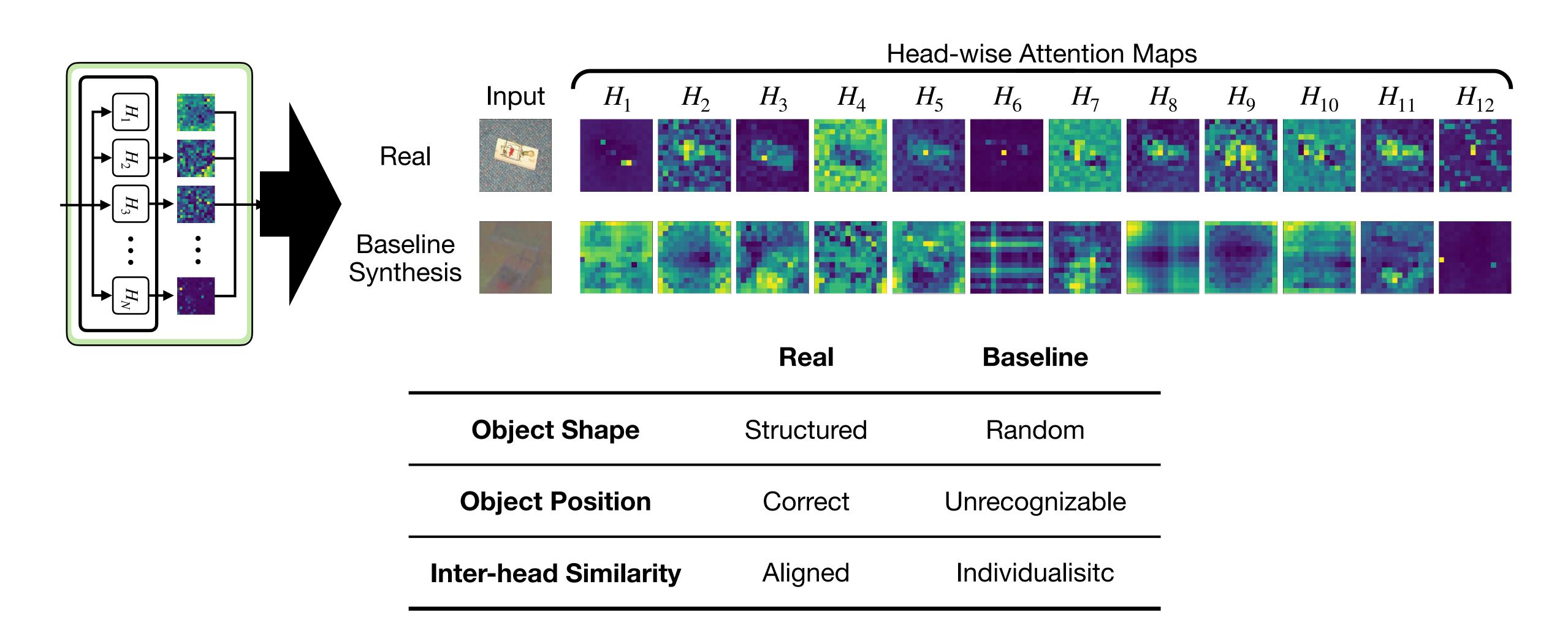
Knowledge Extraction from Attention



Extract prior knowledge from intermediate attention maps

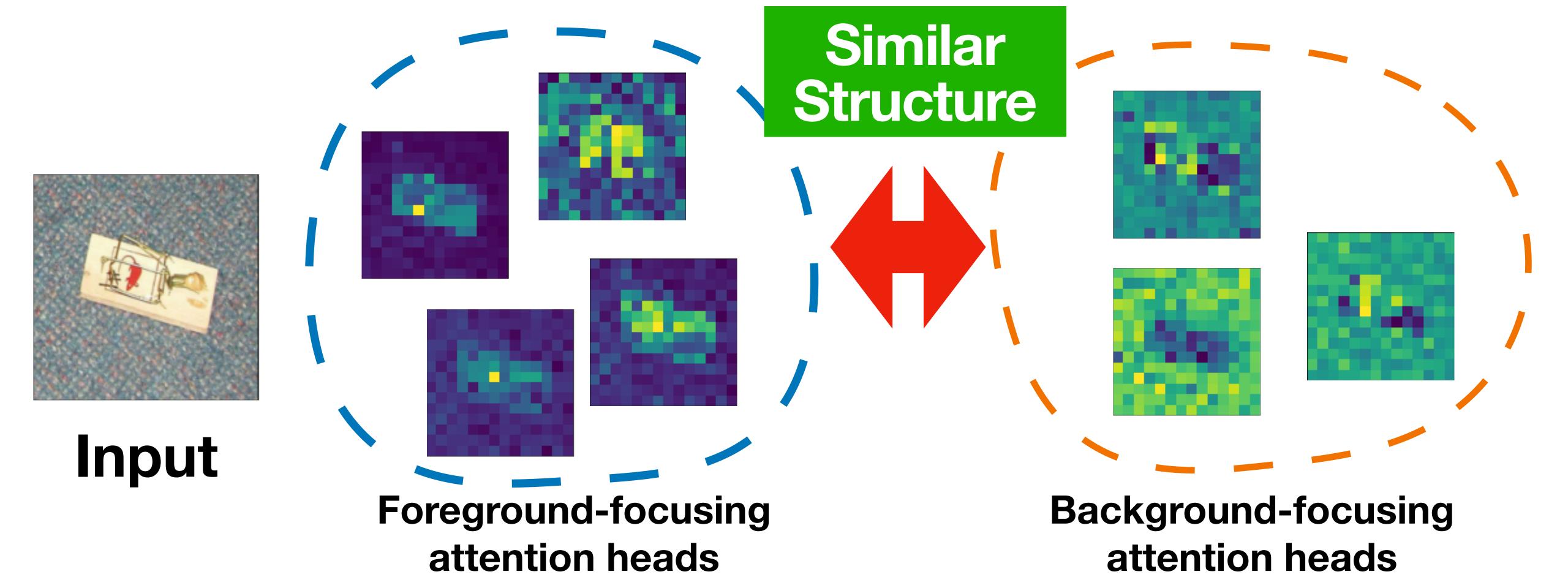
AAAI-25 / IAAI-25 / EAAI-25

Knowledge Extraction from Attention



AAAI-25 / EAAI-25

How to measure inter-head similarity?



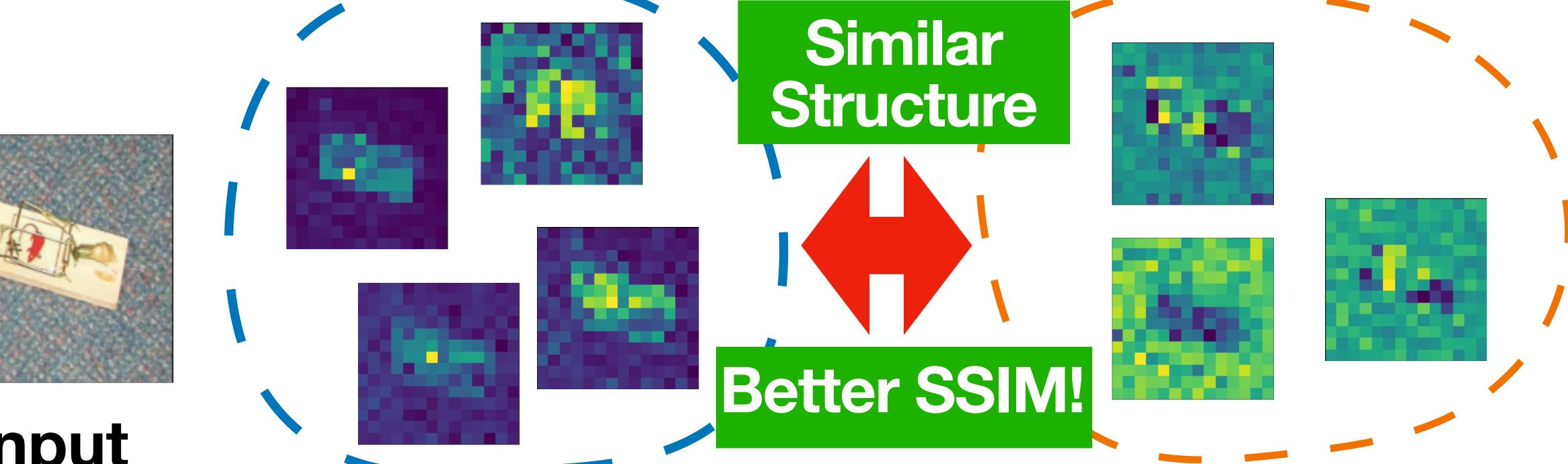
Structure Similarity Index Measure

- SSIM: Image quality evaluation metric mimicking human perception
- Weighted product of luminance (l), contrast (c), structure (s)

$$SSIM(I_x, I_y) = l(I_x, I_y)^{\alpha} \cdot c(I_x, I_y)^{\beta} \cdot s(I_x, I_y)^{\gamma}$$
$$= \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}.$$

How to measure inter-head similarity?

Structural Similarity!



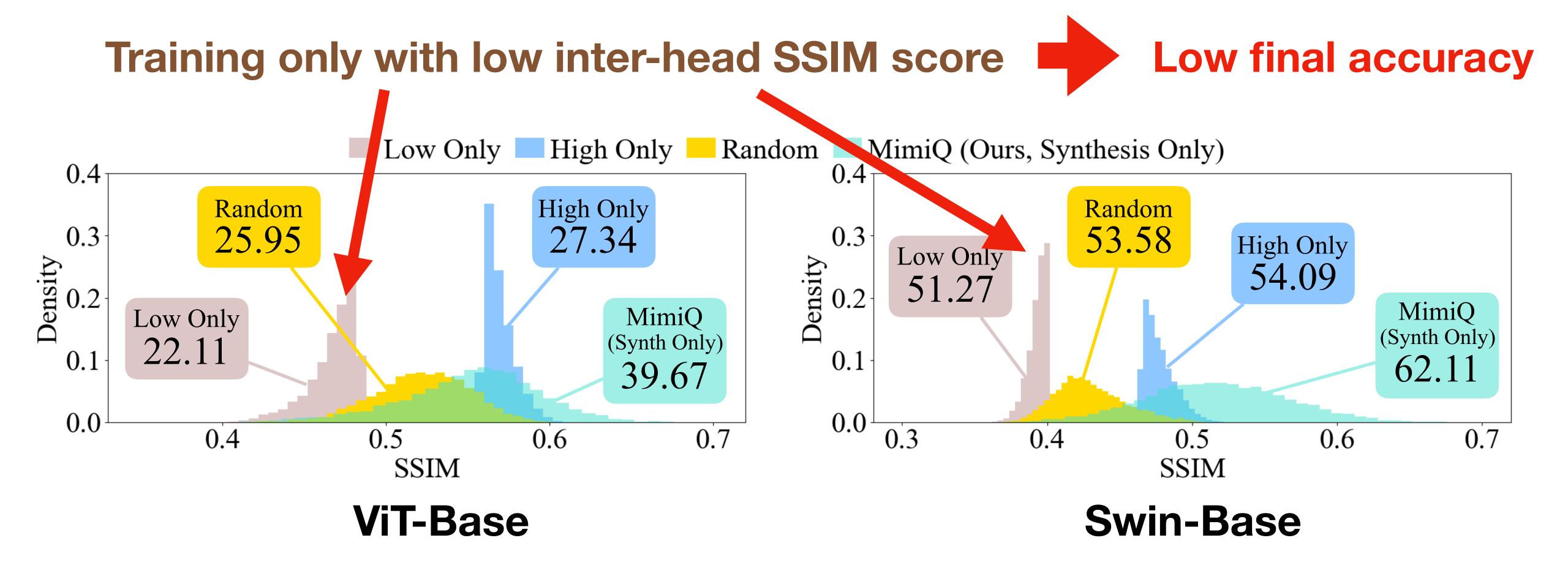
Input

Foreground-focusing attention heads

Background-focusing attention heads

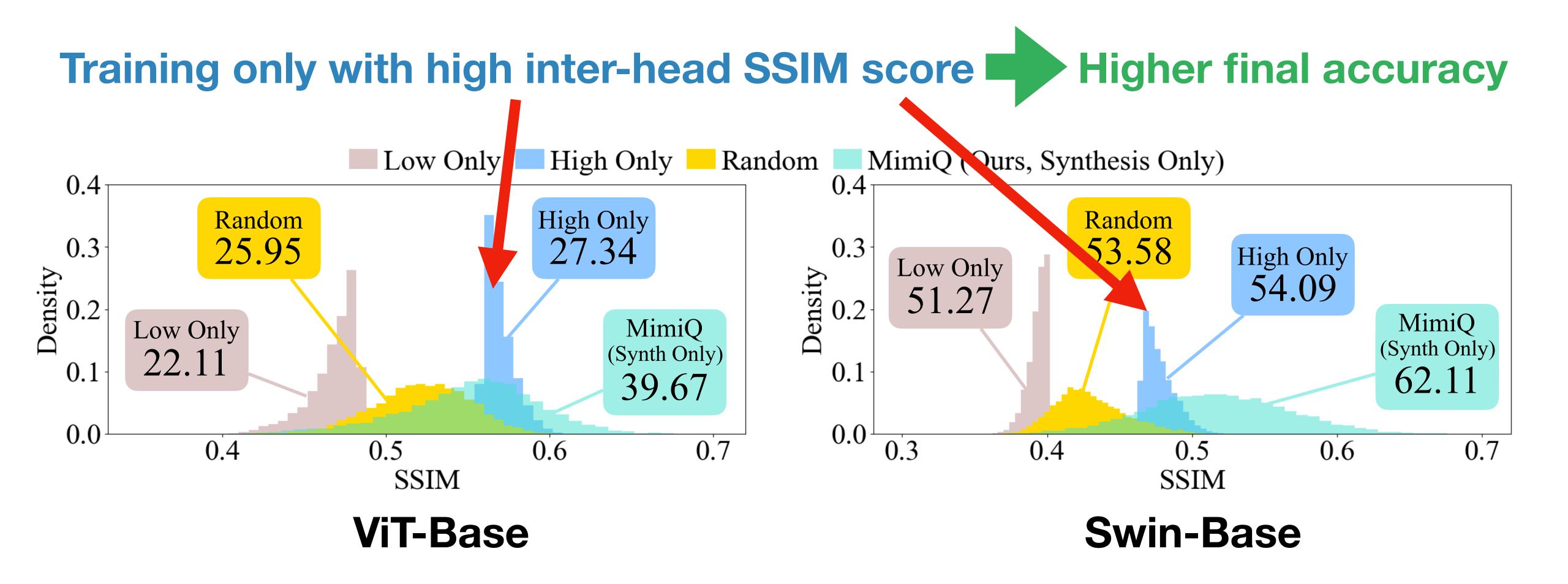
Motivational Study

Inter-head SSIM score of attention and quantization accuracy

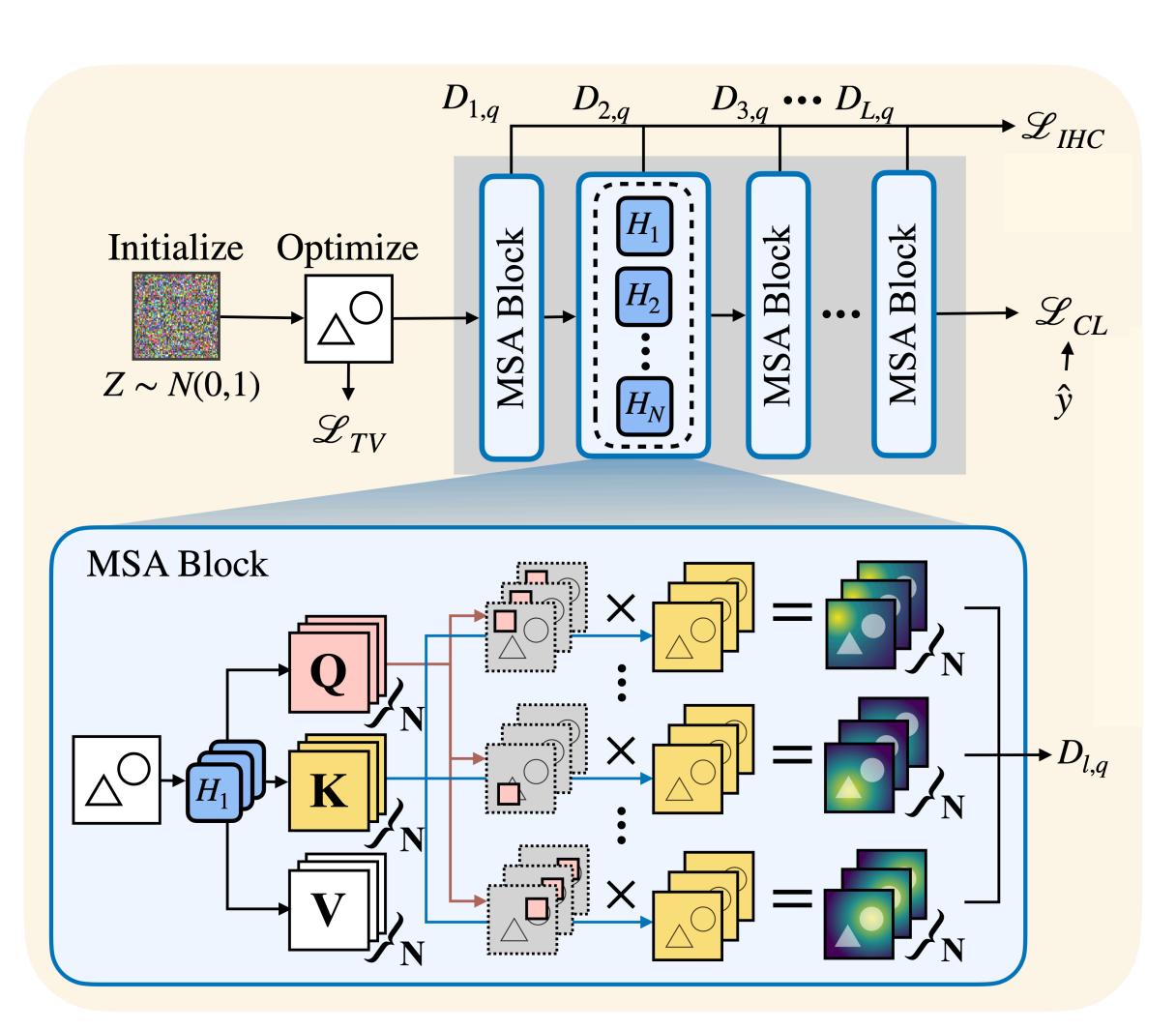


Motivational Study

Inter-head SSIM score of attention and quantization accuracy

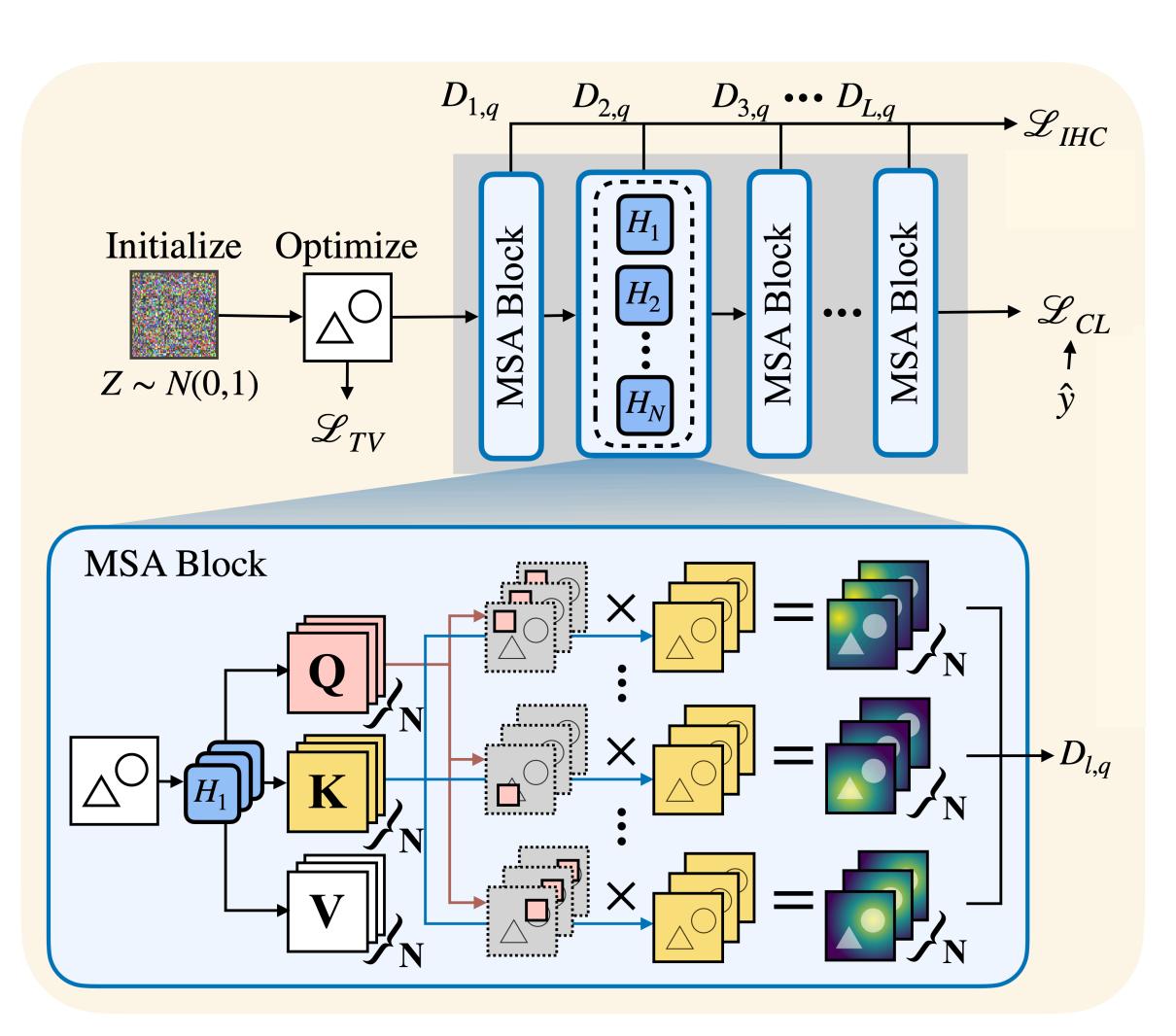


Generating Synthetic Images



- Generate synthetic images towards high absolute SSIM value
 - SSIM > 0 : Positive correlation
 Foreground<->Foreground, vice versa
 - SSIM < 0 : Negative correlation
 Foreground<->Background, vice versa
- Both positive and negative correlation is recommended for better visual quality

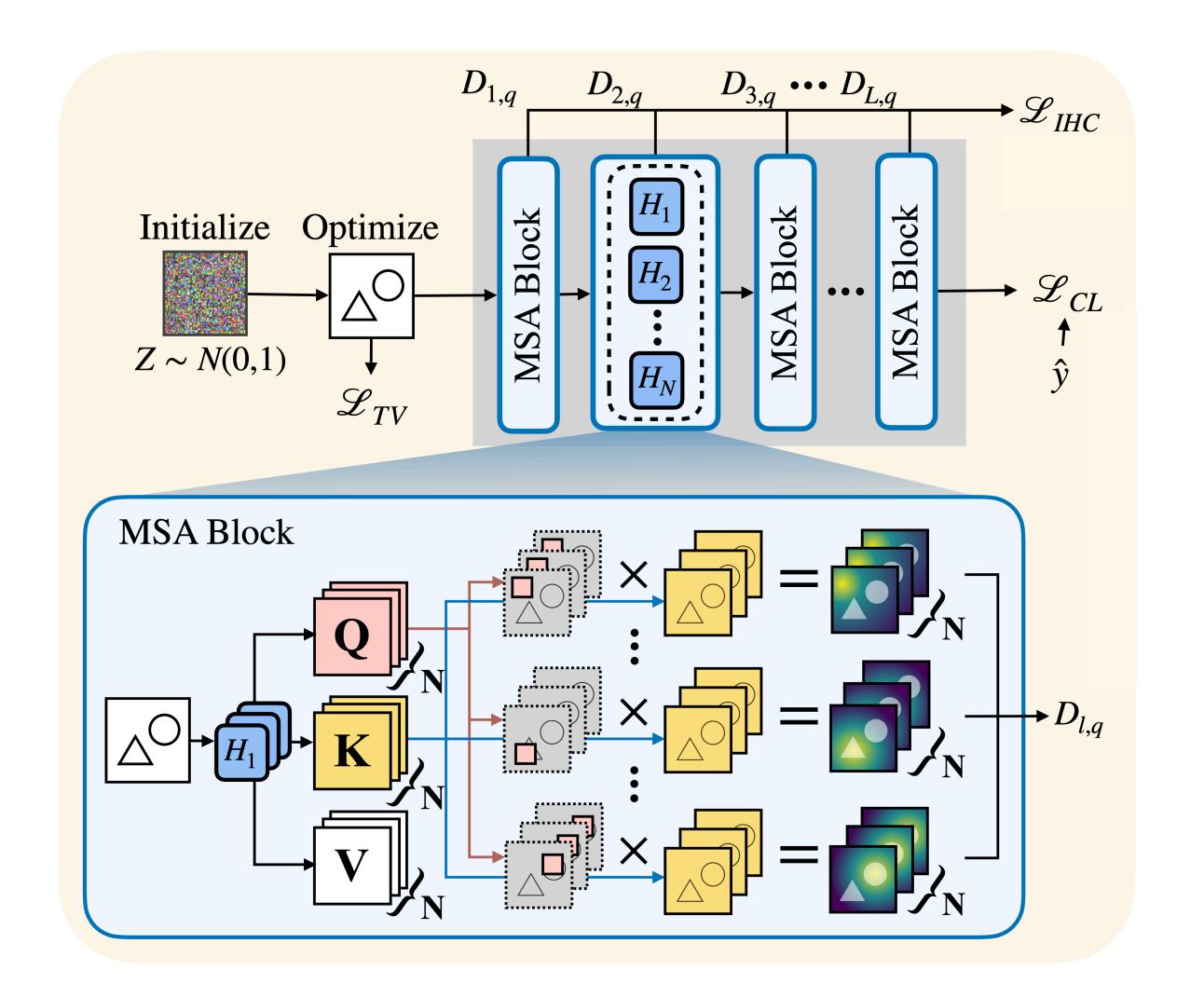
Generating Synthetic Images

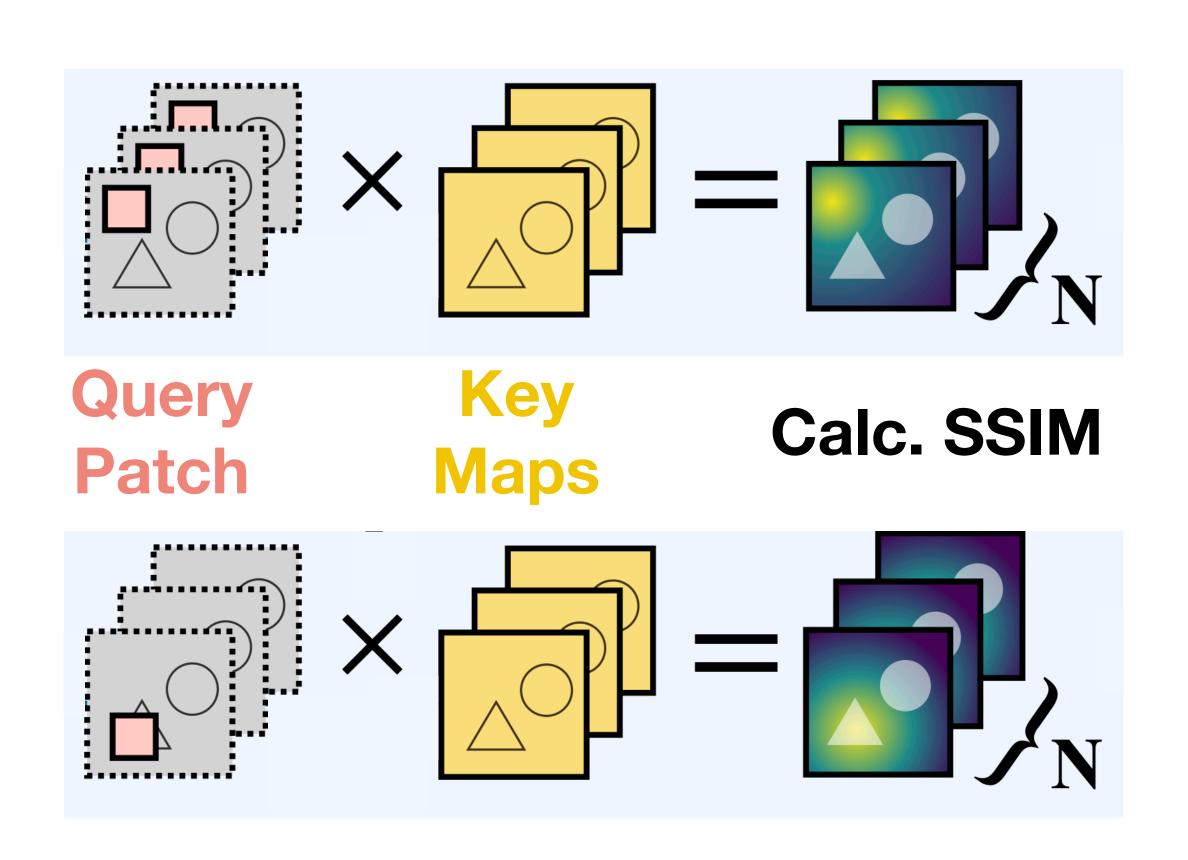


- \mathcal{L}_{CL} : Cross-entropy loss
 - Optimize synthetic image to be classified as a pseudo label \hat{y}
- \mathcal{L}_{TV} : Total variance loss
 - Reduces abrupt changes between nearby pixels
- $\mathcal{L}_{\mathit{IHC}}$: Maximize inter-head SSIM score

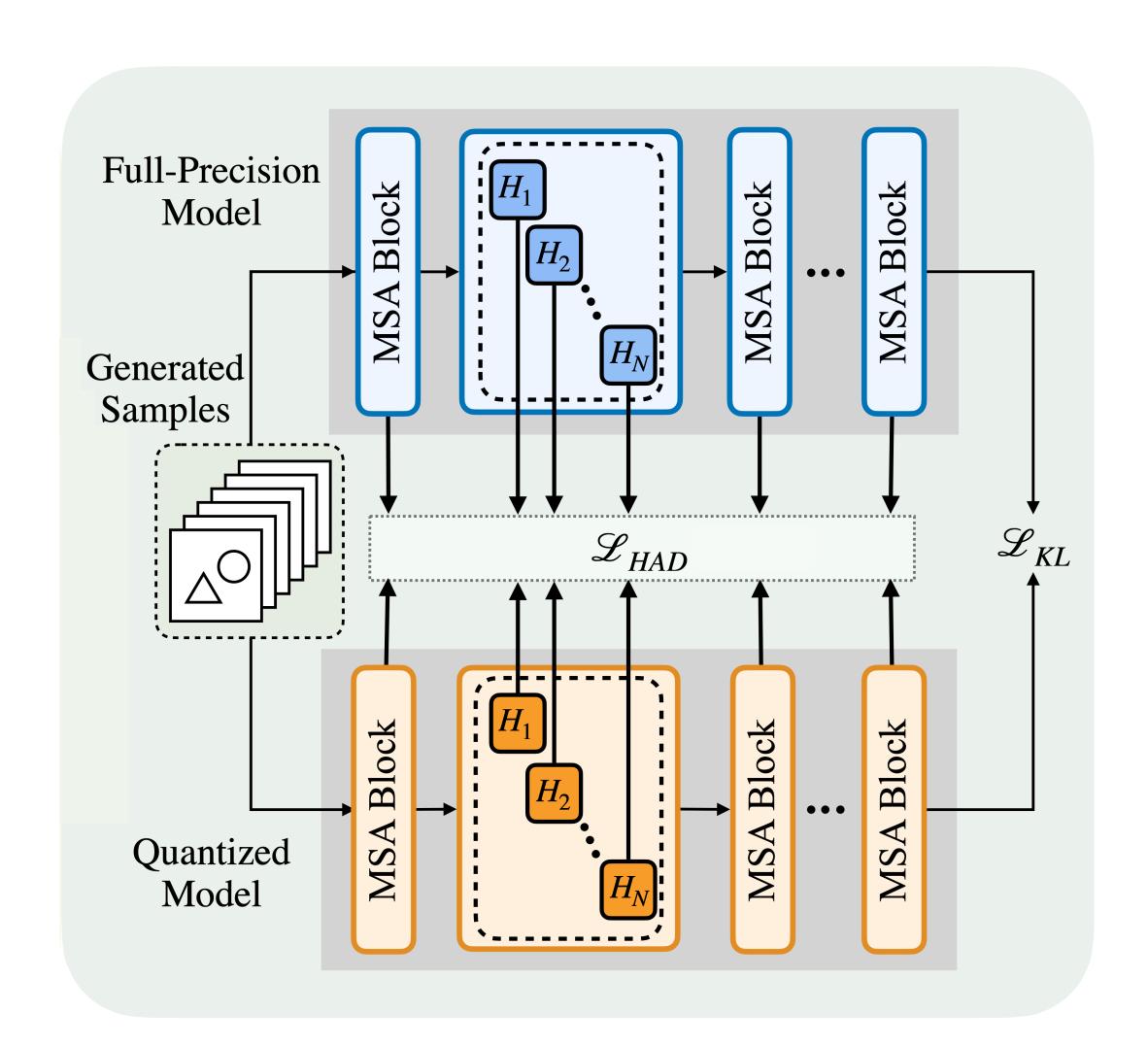
AAAI-25 / EAAI-25

Generating Synthetic Images





SSIM-aware Attention Map Distillation

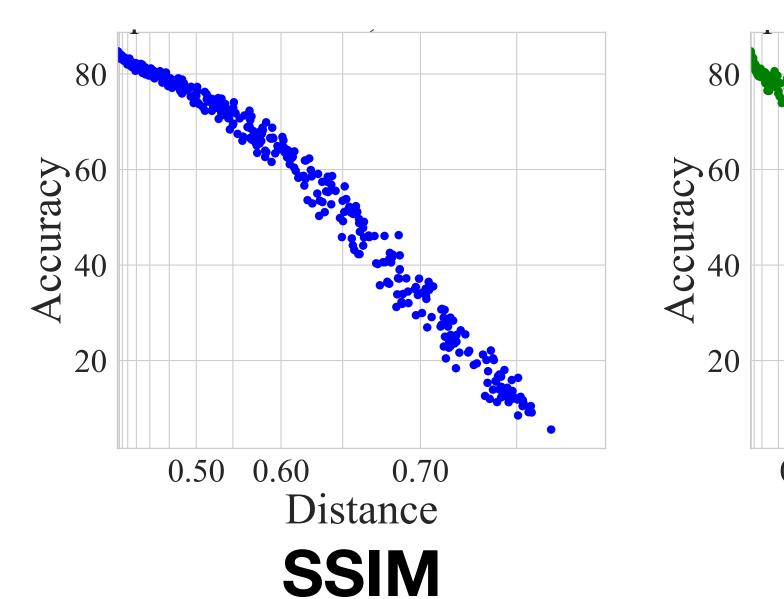


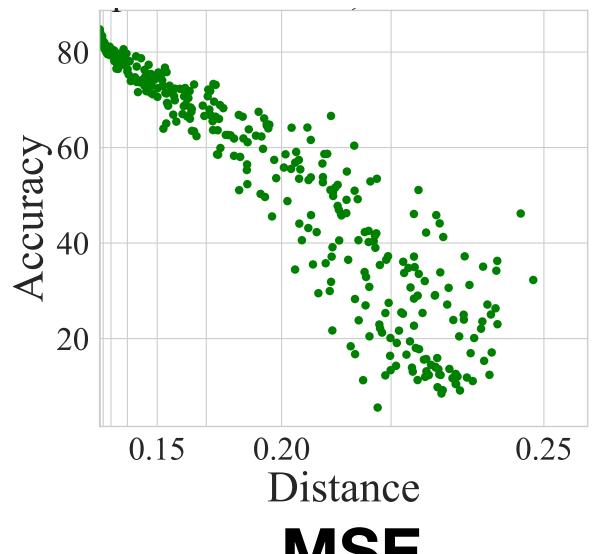
- Head-wise attention map distillation
- Reduce distance between attention maps

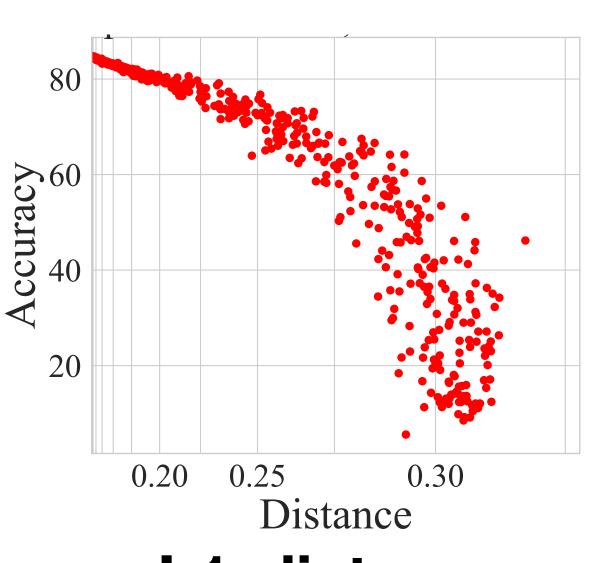
 How do we measure the distance between attention maps?

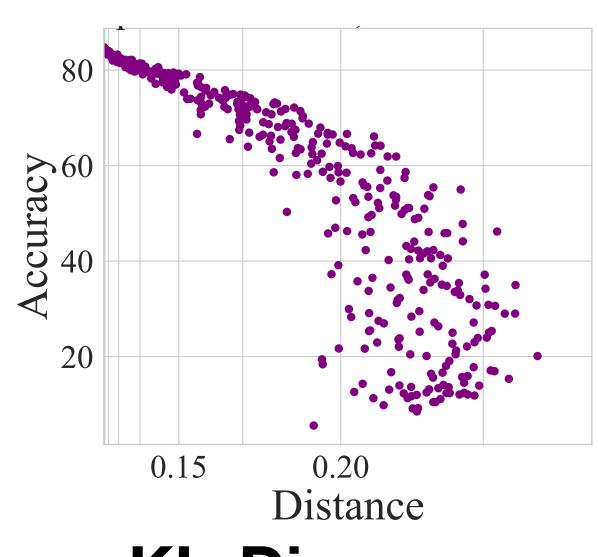
SSIM-aware Attention Map Distillation

Randomly quantize each head of attention maps and plot distance metric and quantization accuracy









Spearman: 0.997

Kendall: 0.952

MSE

Spearman: 0.982

Kendall: 0.894

L1-distance

Spearman: 0.980

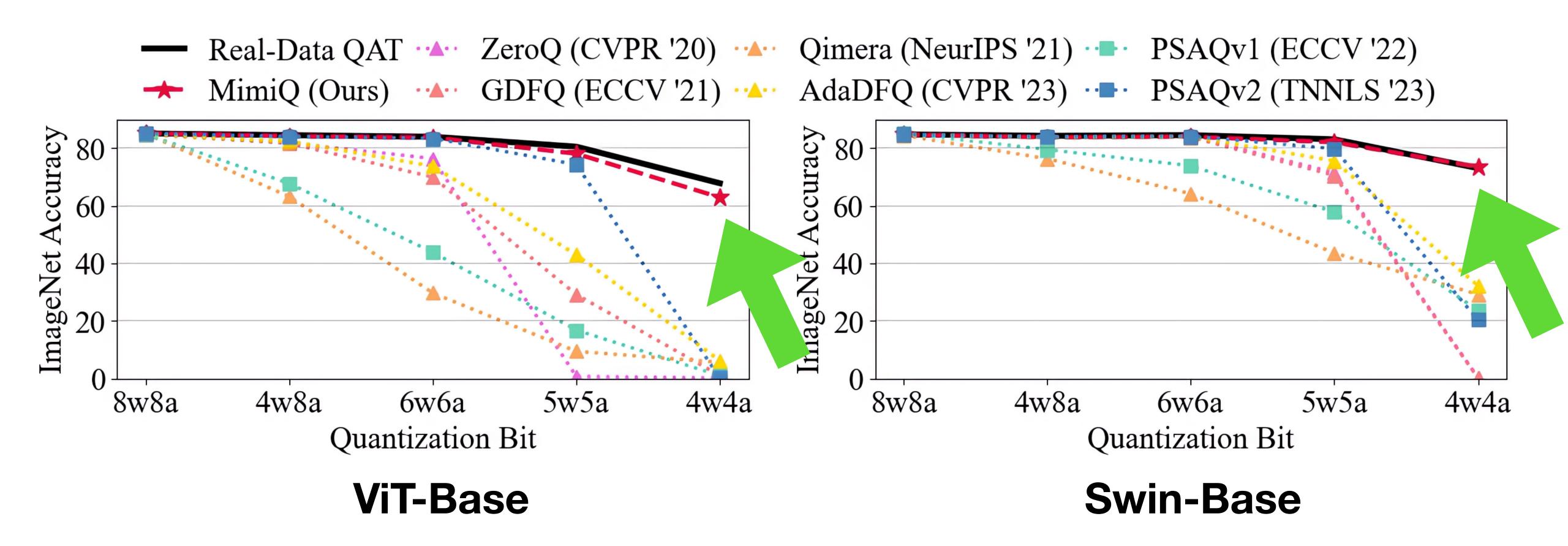
Kendall: 0.886

KL-Divergence

Spearman: 0.966

Kendall: 0.857

Experimental Result: Accuracy



Preserve high accuracy in low-bit settings

Experimental Result: Accuracy

Bits	Methods	Target Arch.	Networks								
			ViT-T	ViT-S	ViT-B	DeiT-T	DeiT-S	DeiT-B	Swin-T	Swin-S	Swin-B
W4/A4	Real-Data FT	-	58.17	67.21	67.81	57.98	62.15	64.96	73.08	76.34	73.06
	GDFQ	CNN	2.95	4.62	11.73	25.96	22.12	30.04	42.08	41.93	36.04
	Qimera	CNN	0.57	7.02	5.61	15.18	11.37	32.49	47.98	39.64	29.27
	AdaDFQ	CNN	2.00	1.78	6.21	19.57	14.44	19.22	38.88	39.40	32.26
	PSAQ-ViT	m ViT	0.67	0.15	0.94	19.61	5.90	8.74	22.71	9.26	23.69
	PSAQ-ViT V2	m ViT	1.54	4.14	2.83	22.82	32.57	45.81	50.42	39.10	39.26
	MimiQ (Ours) Acc. Gain	m ViT				${f 52.03} \ +26.07$					

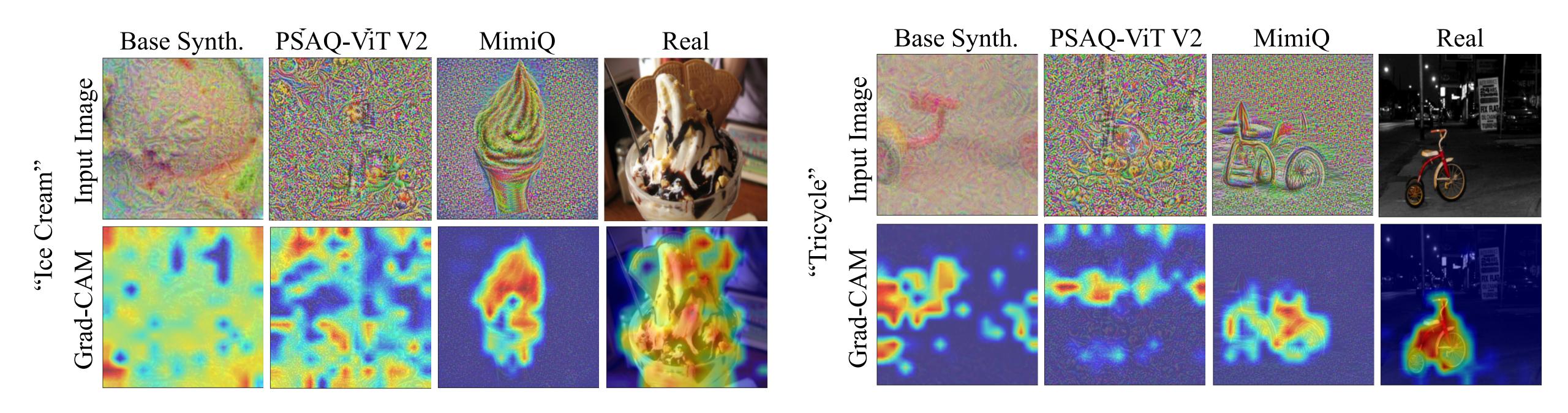
Accuracy gain up to 51.18%p

Analysis: Computational Costs

Method	Type	Synth.	Quant.	Total	Acc.
GDFQ AdaDFQ PSAQ-V1 PSAQ-V2	QAT QAT PTQ QAT	- 0.11h -	10.70h 8.44h 0.0002h 4.55h	10.70h 8.44h 0.11h 4.55h	11.73 6.21 0.94 2.83
MimiQ-1k MimiQ-4k MimiQ-10k	QAT QAT QAT	1.98h 7.92h 19.79h	2.39h 2.39h 2.39h	4.37h 10.31h 22.18h	59.32 62.59 62.91

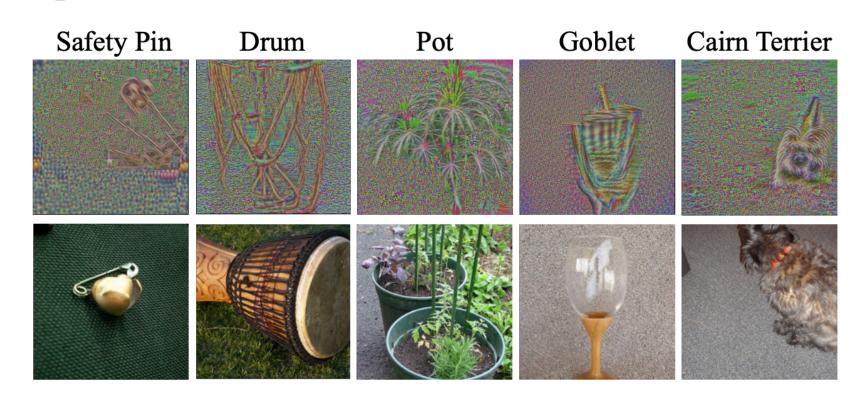
- MimiQ requires synthetic data generation and quantization-aware training
- With similar costs, MimiQ shows superior accuracy
- More synthetic data shows further accuracy boost

Analysis: GRAD-CAM



Synthetic texture on the center GRAD-CAM shows aligned attention on the desired texture information

Input Reconstruction Attack



Most similar pairs of synthetic and real images

Synthetic dataset does not restore **exact** images from the training set

Model Inversion Attack

Measure	Train Test
Synthetic/Real Distinguishability	99.97 99.99
Synthetic→Real Transferability	49.69 0.16

Adaptability of synthetic data training to attacks

Synthetic and real samples are distinguishable and has low transferability

- Data-free quantization aims to tackle the scenario that the original dataset is inaccessible due to privacy concerns, the large dataset size, and copyright issues.
- We propose MimiQ, the first work to consider inter-head attention similarity with SSIM for synthetic sample generation and quantization-aware training.
- We show attention similarity of ViT models plays a crucial role in model training, affecting final accuracy