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Current Limitations of Quantization

[1] ResNet50, ImageNet-1k, 4bit quantization
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Zero-shot Quantization Overview
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No consideration of synthetic samples, or the quantization 

Do KL and CE losses cooperate on ZQ?

Motivation
What loss function have we chosen?
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Measure cosine similarity 
between gradient of KL & CE



CE-KL Gradient Cosine Similarity Analysis
Discrepancy between the gradient direction

( Cosine Similarity  0.0 )<

KL and CE are not cooperating
➔ Performance degradation

What loss function do we need to choose?

Loss Function Analysis
Analysis

A : Loss function  
with better generalizability



Analysis
Loss Surface and Generalization

Better generalizability  Flatter local minima on loss surface  Smaller trace of Hessian matrix≈ ≈

Visualization of Loss Surface (CE/KL)

Loss Surface Flatness 
KL-Divergence  Cross-Entropy > Use KL-Divergence loss only

Trace of Hessian matrix (CE/KL)



Analysis
KL-Divergence Only Training

-0.19%p -4.46%p -2.11%p -9.48%p -12.40%p

Huge accuracy degradation w/ KL-only training

Quantization!
Why?



Analysis
Parameter Updates on Quantization
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Proposed Method
Gradient Inundation (GI)
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Experiment Results
ImageNet Classification (4-bit Quantization)

66.83 
(+2.99)

68.27 
(+2.02)

66.47 
(+4.85)
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Conclusion

Analyzed loss functions 
from multiple perspectives 

and emphasized flatter loss minima

Proposed method that ensures  
balanced weight updates  

among all layers

Inspected current limitations of 
zero-shot quantization training

For the details and more analysis, refer to the paper or find us on poster session 2.2.


