
DANCE:
Differentiable Accelerator/Network

Co-Exploration
Kanghyun Choi*, Deokki Hong*, Hojae Yoon*, Joonsang Yu, Youngsok Kim, and Jinho Lee

*equal contribution

Current Trend

2

[1] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor processing unit”. In: ISCA. 2017.
[2] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

• Many interests in optimizing DNN
• Hardware design

• TPU[1]

• Dataflow
• Decisions about for-loop orders of DNN
• Choose which type of data will be reused

• Neural network design
• Depthwise-Separable Convolution[2]
• Neural Architecture search

Current Trend

3

[1] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor processing unit”. In: ISCA. 2017.
[2] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

• Many interests in optimizing DNN
• Hardware design

• TPU[1]

• Dataflow
• Decisions about for-loop orders of DNN
• Choose which type of data will be reused

• Neural network design
• Depthwise-Separable Convolution[2]
• Neural Architecture search TPU structure

Current Trend

4

[1] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor processing unit”. In: ISCA. 2017.
[2] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

Example of for-loop order for operating a DNN

• Many interests in optimizing DNN
• Hardware design

• TPU[1]

• Dataflow
• Decisions about for-loop orders of DNN
• Choose which type of data will be reused

• Neural network design
• Depthwise-Separable Convolution[2]
• Neural Architecture search

Current Trend

5

[1] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor processing unit”. In: ISCA. 2017.
[2] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

Depthwise-Seperable Convolution

• Many interests in optimizing DNN
• Hardware design

• TPU[1]

• Dataflow
• Decisions about for-loop orders of DNN
• Choose which type of data will be reused

• Neural network design
• Depthwise-Separable Convolution[2]
• Neural Architecture Search

6

• However…
• TPU: Exploit channel-wise parallelism
• DSConv: multiple Conv w/ 1 channel
• With TPU, DSConv is slower than Conv

due to low hardware utilization
• Therefore…
• Accelerator and network have to be

co-optimized

Need for Co-search

Need for Co-search

Separate search
• Fitting hardware to network

➡ Degrades hardware metrics
• Fitting network to hardware

➡ Degrades accuracy

7

H
ar

dw
ar

e
m

et
ric

s(
e.

g.
 la

te
nc

y)

Error

Good accuracy,
Bad hardware metrics

Good hardware metrics,
Bad accuracy

*Lower is better

Need for Co-search

8

H
ar

dw
ar

e
m

et
ric

s(
e.

g.
 la

te
nc

y)

Error

Our Goal

Good accuracy,
Good hardware metrics

Co-search
• Fitting hardware and network

simultaneously
✓Good hardware metrics
✓Good accuracy

*Lower is better

9

Differentiable NAS

• Automatically find neural architecture

• Find and evaluate all candidates at once

• All loss function need to be differentiable

Integrating hardware search with NAS method

Accelerator Architecture Search

• Dataflow : loop order and data reuse scheme

• Number of PEs (PEx, PEy)

• Size of Register File(RF)

Performance

Accuracy

Our Target Problem

Our Target Problem

10

Differentiable NAS

• Automatically find neural architecture

• Find and evaluate all candidates at once

• All loss function need to be differentiable

Accelerator Architecture Search
Not

Differentiable
Performance

Accuracy

Integrating hardware search with NAS method

• Dataflow : loop order and data reuse scheme

• Number of PEs (PEx, PEy)

• Size of Register File(RF)

Our Target Problem

11

Differentiable NAS

• Automatically find neural architecture

• Find and evaluate all candidates at once

• All loss function need to be differentiable

Accelerator Architecture Search
Differentiable NN

approximation
Performance

Accuracy

Integrating hardware search with NAS method

• Dataflow : loop order and data reuse scheme

• Number of PEs (PEx, PEy)

• Size of Register File(RF)

DANCE:
Differentiable Accelerator/Network Co-Exploration

Differentiable co-exploration Differentiable Cost-estimation Network
Differentiable

Optimal HW-generation
Network

12

[3] Angshuman Parashar et al. “Timeloop: A Systematic Approach to DNN Accelerator Evaluation”. In: ISPASS. 2019.
[4] Yannan Nellie Wu et al. “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs”. In: ICCAD. 2019.

Overall Architecture

• NAS module determines
neural network architecture
• DANCE evaluator determines

accelerator architecture
and predicts hardware metrics

13

Overall Architecture

14DANCE Evaluator

Data

Latency, Energy, Area
(HW metrics)

Accuracy

NN
Arch.

NAS Module

(ℒCE)

(ℒHW)

ℒTOTAL

Accelerator Design

PEs, RF Size, Dataflow
(Accel. Arch.)

Overall Architecture

15

• NAS module determines
neural network architecture
• DANCE evaluator determines

accelerator architecture
and predicts hardware metrics
• HW metrics of accelerator

directly affect NN architecture
by gradient flow

Evaluator Module

Consists of Two Neural Network
1. Hardware generation network
2. Cost estimation network

16

Hardware Generation Network
• Pre-trained to find

optimal HW architecture
• Choose optimal

PEx, PEy, RF, DF
configuration

Evaluator Module

17

Evaluator Module

Cost Estimation Network
• Neural Net approximation of

Hardware Cost Model
• Timeloop, Accelergy
• Any Cost Model can be used

18

Training Evaluator Module

Dataset for training Evaluator Module
• Hardware generation network

- input: Neural network architecture
- output: Optimal accelerator architecture
- 50K networks sampled

• Cost estimation network
- input: NN-HW pair
- output: HW metrics for given NN-HW pair
- 1.8 million pairs sampled

Dataset

19

Evaluator Module

Less than 2 percent error estimation compared with Timeloop cost model
20

Network Accuracy

Hardware
Generator

PEx
98.9%

PEy
98.3%

RF size
98.3%

Dataflow
98.8%

Network MSRE(Mean Square Relative Error)

Cost Estimator Latency
99.6%

Energy
99.7%

Area
99.9%

Network MSRE(Mean Square Relative Error)

Overal Evaluator Latency
98.3%

Energy
98.3%

Area
99.2%

Comparison with Naive approach

0.5ms for a single inference
on a single 2080Ti GPU

Timeloop

Accelergy

112s of exhaustive search
on 48 threads

of two Xeon Silver-4214 CPUs

Timeloop

Accelergy

21

 CostHW_EDAP = Energy ⋅ Latency ⋅ Area
CostHW_linear = λEEnergy + λLLatency + λAArea

Experimental Settings

Select one equation to optimize HW metrics
• EDAP cost
• Optimize three aspects at the same time

• {Latency, Energy}-oriented loss
• Give more weights by optimization priority

22

• CIFAR-10 Dataset
• Compared to baseline,
• 10x better EDAP
• 3x better latency

 with similar accuracy

23

Experimental Results

*Lower is better

• Accelerators can utilize
channel-level parallelism
• To achieve low latency,
• Get benefit from

channel-level parallelism

Search NN-HW with latency-oriented cost function

24

Experimental Results: Latency-oriented

• Neural network
• Small kernel sizes

• Hardware accelerator
• Big PE array

• Weight Stationary dataflow
➡ low latency

25

Search NN-HW with latency-oriented cost function

Experimental Results: Latency-oriented

• Energy consumption
• Memory accesses
• MAC ops

• To achieve low energy
➡ Reduce

 memory accesses

26

Search NN-HW with energy-oriented cost function

Experimental Results: Energy-oriented

• Neural network
• Large kernel sizes
• Narrow channels

• Hardware accelerator
• Large RF for

more local data reuse
• Row Stationary dataflow

➡good energy efficiency
27

Search NN-HW with energy-oriented cost function

Experimental Results: Energy-oriented

Comparison with Prior Works

28

Algorithm Backbone Dataset Acc.(%) GPU-
hours

Candidat
es Method Net-HW

Relation

FPGA/DNN co-design: An efficient design
methodology for IoT intelligence on the edge Custom DAC-SDC 68.6% N/A 68 CD O

On neural architecture search for resource-
constrained hardware platforms Custom CIFAR-10 89.7% N/A N/A RL O

Co-Exploration of neural architectures and
heterogeneous ASIC accelerator designs

Targeting Multiple Tasks
ResNet-9 CIFAR-10 93.2% 3.5h ~160 RL O

Best of both worlds: AutoML code sign of
a CNN and its hardware accelerator NASBench CIFAR-100 74.2% 2300h 2300 RL O

Hardware/software co-exploration of
neural architectures ProxylessNAS CIFAR-10 85.2% 103.9h 308 RL O

EDD: Efficient Differentiable DNN
Architecture and Implementation Co-search

for embedded AI solutions
ProxylessNAS CIFAR-10 94.4% 3h 1 gradient X

DANCE: Differentiable Accelerator/
Network Co-Exploration ProxylessNAS CIFAR-10 95.0% 3h 1 gradient O

Comparison with Prior Works

29

Algorithm Backbone Dataset Acc.(%) GPU-
hours

Candidat
es Method Net-HW

Relation

FPGA/DNN co-design: An efficient design
methodology for IoT intelligence on the edge Custom DAC-SDC 68.6% N/A 68 CD O

On neural architecture search for resource-
constrained hardware platforms Custom CIFAR-10 89.7% N/A N/A RL O

Co-Exploration of neural architectures and
heterogeneous ASIC accelerator designs

Targeting Multiple Tasks
ResNet-9 CIFAR-10 93.2% 3.5h ~160 RL O

Best of both worlds: AutoML code sign of
a CNN and its hardware accelerator NASBench CIFAR-100 74.2% 2300h 2300 RL O

Hardware/software co-exploration of
neural architectures ProxylessNAS CIFAR-10 85.2% 103.9h 308 RL O

EDD: Efficient Differentiable DNN
Architecture and Implementation Co-search

for embedded AI solutions
ProxylessNAS CIFAR-10 94.4% 3h 1 gradient X

DANCE: Differentiable Accelerator/
Network Co-Exploration ProxylessNAS CIFAR-10 95.0% 3h 1 gradient O

Comparison with Prior Works

30

Algorithm Backbone Dataset Acc.(%) GPU-
hours

Candidat
es Method Net-HW

Relation

FPGA/DNN co-design: An efficient design
methodology for IoT intelligence on the edge Custom DAC-SDC 68.6% N/A 68 CD O

On neural architecture search for resource-
constrained hardware platforms Custom CIFAR-10 89.7% N/A N/A RL O

Co-Exploration of neural architectures and
heterogeneous ASIC accelerator designs

Targeting Multiple Tasks
ResNet-9 CIFAR-10 93.2% 3.5h ~160 RL O

Best of both worlds: AutoML code sign of
a CNN and its hardware accelerator NASBench CIFAR-100 74.2% 2300h 2300 RL O

Hardware/software co-exploration of
neural architectures ProxylessNAS CIFAR-10 85.2% 103.9h 308 RL O

EDD: Efficient Differentiable DNN
Architecture and Implementation Co-search

for embedded AI solutions
ProxylessNAS CIFAR-10 94.4% 3h 1 gradient X

DANCE: Differentiable Accelerator/
Network Co-Exploration ProxylessNAS CIFAR-10 95.0% 3h 1 gradient O

Conclusion
• Novel differentiable method for co-optimizing DNN & accelerator
• Build hardware evaluator with neural network
• Get optimal hardware design with evaluator
• Propagate HW costs to NAS module via gradient

• Reduce co-exploration costs
• Applicable to the various tasks
• e.g. video processing, NLP

3131

